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Abstract. The GARCH (p, ¢) model is a very interesting stochastic process with widespread applications
and a central role in empirical finance. The Markovian GARCH (1, 1) model has only 3 control parameters
and a much discussed question is how to estimate them when a series of some financial asset is given. Besides
the maximum likelihood estimator technique, there is another method which uses the variance, the kurtosis
and the autocorrelation time to determine them. We propose here to use the standardized 6th moment.
The set of parameters obtained in this way produces a very good probability density function and a much
better time autocorrelation function. This is true for both studied indexes: NYSE Composite and FTSE
100. The probability of return to the origin is investigated at different time horizons for both Gaussian
and Laplacian GARCH models. In spite of the fact that these models show almost identical performances
with respect to the final probability density function and to the time autocorrelation function, their scaling
properties are, however, very different. The Laplacian GARCH model gives a better scaling exponent for
the NYSE time series, whereas the Gaussian dynamics fits better the FTSE scaling exponent.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management — 05.45.Tp Time

series analysis — 89.75.-k Complex systems

1 Introduction

In recent years, physicists have shown an increasing inter-
est in Economics problems [1]. The reason seems to be in
the fact that many of these problems may be scrutinized
by using standard tools of Statistical Physics [2].

In this paper, we investigate the generalized autore-
gressive conditional heteroscedasticity (GARCH) model
[3-6]. It was designed to describe a central question in the-
oretical and empirical finance — the volatility. Nowadays,
the GARCH model plays an important role in the liter-
ature and it may be useful even in the complicated field
of accurate forecasts [7—10]. For some model modifications
or extensions see [11-17], and for reviews on the subject,
see [18-21]

The GARCH (p, q) model has (p 4+ g + 1) parameters.
Here, we consider only the Markovian process GARCH
(1, 1). So, there are three parameters and they can be
estimated by evaluating certain quantities of a financial
asset. Usually, a Gaussian conditional probability density
function is chosen for the GARCH process but many other
distributions are possible. A very common method to es-
timate the GARCH’s parameters is the Maximum Likeli-
hood Estimator (mle) [22-24]. An alternative method uses
the fact that the variance, the kurtosis and the autocorre-
lation time are exactly known functions of the parameters.
However, in the real world, to get a confident value for the
autocorrelation time is very unlikely. Thus, one of the pa-
rameters is arbitrarily chosen in order to give a very large
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autocorrelation time. Although both procedures give rea-
sonable results for the final probability density function
(PDF), they fail to reproduce correctly the time depen-
dence of the autocorrelation function. The reason is quite
simple: financial assets have autocorrelation function de-
caying as power law while the Gaussian GARCH decays
exponentially [1]. It is worth noticing that we are referring
to the autocorrelation time obtained from the autocorre-
lation function of the square of the return.

Instead of the autocorrelation time, we propose here
the use of the standardized 6th moment (i.e., the 6th mo-
ment divided by the cubic of the variance). There is an
exact formula for this moment in the Gaussian dynamics,
but it is only valid within a region which is not relevant for
real financial data. For this reason, we propose a pertur-
bation expansion for the 6th moment from which a set of
extrapolated parameters of the GARCH model can be cal-
culated. Simulations of the GARCH model, with this set of
parameters, reveal a much better agreement with the au-
tocorrelation function of a real asset. Moreover, this char-
acteristic is robust, i.e., it is preserved for both time series
studied: NYSE Composite (New York Stock Exchange)
and FTSE 100 (Financial Times Stock Exchange).

We also study the Laplacian GARCH model, that is,
the GARCH model with the conditional PDF decaying ex-
ponentially with the return. We derive an exact expression
for the kurtosis, which is written in terms of the GARCH
parameters. But, for the sixth moment, an exact formula
is unknown. So, we calculate an asymptotic series expan-
sion and then apply our extrapolation method.
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The performances of the Gaussian and the Laplacian
GARCH models are compared when applied to the NYSE
and FTSE indexes. With respect to the PDF and to the
time autocorrelation function, both models are practically
equivalent, giving fairly good results. Their differences
only appear when the scaling properties are studied. To
test the effectiveness of the models, we need to investigate
how the probability of return to the origin scales for any
time horizon. For the NYSE index, this is the Achilles heel
of the Gaussian GARCH model. However, the Laplacian
GARCH model works fine. The NYSE index scaling ex-
ponent is 0.691 £ 0.062. The Gaussian GARCH exponent
is, of course, 0.5, whereas for the Laplacian GARCH, we
found 0.635 + 0.022. So, the Laplacian GARCH agrees,
within the error bars, with the real data. On the other
hand, the same calculations applied to the FTSE index
favors the Gaussian model because the FTSE scaling ex-
ponent is 0.49 4+ 0.10. In the next section, we present a
brief review of the ARCH and GARCH models.

2 ARCH and GARCH models

An ARCH model is a stochastic process with autoregres-
sive conditional heteroscedasticity. It was first introduced
by Engle in 1982 [25]. ARCH models are simple mod-
els capable to describe a stochastic process which is lo-
cally non-stationary but asymptotically stationary. If the
stochastic process exhibits a time dependent variance, i.e.,
volatility, then the ARCH models are particularly useful
and therefore have been applied to many different areas of
economics: interest rates, stock returns, foreign exchange
rates, etc. In an ARCH process, the variance at a time
t depends on some past values and it is characterized by
a certain number of parameters. An ARCH(p) process is
defined by the equation

(1)

where the parameters ag, o1, ..., ap are positive constants
and z; is a random variable, with zero mean and vari-
ance o2, coming from some conditional probability density
function P;(z;). Once the parameters /s and the form of
Pi(x¢) of an ARCH(p) model are chosen, equation (1) is
iterated and the asymptotic distribution of x; is deter-
mined and compared with the probability density func-
tion of some financial asset. Unfortunately, in order to get
good results, ARCH(p) models need very long memories
(large p). For this reason, Bollerslev [3] proposed in 1986
a generalization of the ARCH’s models, the GARCH (p,
q) processes. A GARCH (p, ¢) model is defined by

2 _ 2 2
Op =00 +01Ti_1 + ...+ QpTi_y,

— 040+041sz1+...+ap:cffp+610t2,1+...+ﬂqat27q (2)

here, the o’s and §’s are control parameters (all real pos-
itive constants) and x; are random variables with zero
mean and variance o? obtained from a conditional prob-
ability distribution P;(z:), usually taken to be Gaussian.
In this paper, we restrict our analysis to the Markovian
process GARCH (1, 1)

(3)

2 2 2
o; = ap +a1x;_q + f10;_q,
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which has only 3 parameters g, a; and ;. The initial
condition is assumed to be o2 = 0.

There are many methods to estimate the 3 parameters.
Perhaps the most common method to fit a GARCH model
is based on the maximum likelihood estimator (mle), in-
troduced by Fisher in 1912 [26]. When applied to a finan-
cial time series, the mle procedure is as follows [24]. Let
Z(t) be the return of some financial asset (see Eq. (13)
below). By assuming that the probability distribution of
Z(t) is normal, the analysis consists in a numerical run
through the whole space of the parameters in order to
find the parameters values which maximize the expression

20

2
20}

(4)

|
t:l_[1 [\/27T0t2 P (

where o7 is given by equation (3). There are commercial
packages which rapidly determine the GARCH parameters
via the mle technique. We used the GARCH toolbox of
MATLAB [27].

Another method to estimate the GARCH’s parame-
ters involves the calculation of the moments and the time
autocorrelation [1,28].

The analytical expression of the n-th moment after T’
iterations is given by

(2} = / / jl:[:Pt(xt)dxt / Pr(zr)aidzr.  (5)

Because the distribution P;(x+) has zero mean the variance
is equal to the second moment.

The autocorrelation function (z;zty,) of the random
variable z; is proportional to a delta function 6(7). Con-
sequently, only higher-order correlations are interesting or
useful. In particular, the autocorrelation for the z? vari-
able,

t—1
(x%I?_H_) :// HPt/(.ﬁt/)d.ﬁt//Pt(It).ﬁ%dJ?t

t'=1
t+7—1
X// H Py (xtn)dl‘t///Pt_H— (It+7—)$%+7_d$t+7—. (6)
t=t+1

From now on, irrespective if we are dealing with real data
or simulating GARCH’s dynamics, we define the normal-
ized time autocorrelation function F(7) of z7
(@faf, ) — (=) (af,r)

(xf) — ((2))?

According to Bollerslev [3], z? is a Markovian random
variable such that

F(r) = (7)

’
(@7a}, ) ~ exp(—=),
Tc

(8)
with time autocorrelation

Te = |11’1(051 —|— ﬁ1)|_1.
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(1= B¢ =31t — 902p1 — 15a7)(1 — B — 201 1 — 3ai))

(19)

The equation above, together with the 2th and 4th mo-
ments, compound a second method that we shall refer
as Te.

Here we propose a new method to estimate the
GARCH’s parameters. The parameters a7 and 31 are eval-
uated using, simultaneously, the exact kurtosis expression
and an asymptotic series expansion of the sixth moment.
The parameter ag is then obtained from the variance for-
mula. Considering the NYSE and the FTSE indexes, we
shall show that our prescription gives better results than
the mle and the 7. methods.

3 Gaussian GARCH models

A model is said a Gaussian GARCH model if the condi-
tional probability function P;(x:) is Gaussian with fluctu-
ating variance. More explicitly

.2
exp(—5.7)

Pl@) = o (2w 3
t

; (10)

where the variance o2 change with time according equa-
tion (3).
Using equations (3, 5) and (10), it can be proved [29]

that the variance o? converges to

2 7))
o (o, 01, 01) = [pep—
—a1—f

inasmuch as (a3 + 01) < 1. Indeed, with this restriction,
equation (11) holds for any probability density function.

The kurtosis x is defined as the 4th moment divided
by the square of the variance. For a Gaussian distribution,
its exact expression is given by [29]

(*)

’iG(alaﬂl) = !

(11)

63
1-— 30&% — 20&1ﬁ1 — ﬁ%

=3+ (12)

In the 7. method, the analytic equations (9, 11) and (12)
are made equal to the autocorrelation time, the variance
and the kurtosis calculated from the time series of some
financial asset. As we shall see, the great obstacle is the
autocorrelation time 7.. Its determination is very difficult
and imprecise. The point is that, in the real world, ensem-
ble averages are not possible so a good estimation of 7, is
out of question.

We analyze the daily values of the NYSE composite
index, recorded from December 31, 1965 to January 31,
2006 (10088 points) and the FTSE 100 index, recorded
from April 2, 1984 to January 30, 2007 (5 768 points). Let
Y (t) be the index value at time ¢. As our frequency data
is very low, the recommended random variable to be used
here is the return Za;(t) defined by

Zar(t) = In(Y (¢ + At)) — In(Y (¢)) (13)

hereafter, for the sake of simplicity, we will denote Z(t) =
Z ap=1(t) when At = 1.

In the case of the maximum likelihood estimator, we
used the GARCH toolbox of MATLAB to determine the
control parameters for the NYSE and FTSE time series

8¢ = (g, a, f1) = (1.23 x 1075,0.080, 0.906) (14)

mle

sT5¢ — (g, a1, B1) = (1.69 x 107°,0.089,0.894). (15)
For the NYSE (FTSE) index, the variance and kurtosis
can be immediately determined: aiyse = 8.084 x 107°
(1.035 x 107%) and Kpyse = 38.507 (11.061). On the other
hand, the time autocorrelation function F'(7) has the very
wild behavior shown in Figure 3. An estimative of 7. can
be obtained by finding that time in which F(7) turns neg-
ative for the first time. We get 7¥%¢ = 143 (224).
Substituting the values above into equations (9, 11)
and (12), we calculate the GARCH set of parameters s,
st = (o, a1, 1) = (5.63 X 1077,0.080, 0.913) (16)

Te

1% = (ag, a1, B1) = (4.56 x 1077, 0.057,0.939). (17)
Values of (31, bigger than 0.9, are often used in the lit-
erature, e. g., §1 = 0.90000 for the S&P 500 [1] and
B1 = 0.90501 for the stock prices of the Center for Re-
search in Security Prices (CRSP) [28].

Instead of using the maximum likelihood estimator or
the time autocorrelation 7., we propose the series expan-
sion of the standardized 6th moment @ as a new way to
estimate the GARCH control parameters. It is defined as
the 6th moment divided by the cube of the variance

()

O(a1,p1) = (18)

Ech
This is a natural choice since it is the next even moment
after the kurtosis.

In his paper, Bollerslev [3] derived an analytical ex-
pression for all even moments of a GARCH process. The
existence of these moments holds in a very limited region
of the parameters space (a1, 1). The higher the moment,
smaller the region. For the standardized sixth moment, we
have the exact formula

see equation (19) above.

Financial indexes have time increasing moments. The
higher the moment, the faster is its divergence. In the
Bollerslev’s paper [3], the GARCH process is assumed to
be stationary in the wide-sense, that is, its moments are
time independent. However, financial data cannot be de-
scribed by a wide-sense stationary stochastic process, they
are at best asymptotically stationary! This means that, for
real financial markets, the GARCH parameters are beyond
the radius of convergence of the exact formula given in
(19). Indeed, if we substitute the aq, 31 values estimated
by the mle and 7. techniques into the equation (19), we
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get negative moments: (—2,131.3; —178.5) for the NYSE
and (—644.3; —108.0) for the FTSE index, respectively.

We can derive a series expansion for the sixth moment
by substituting equations (3) and (10) into equation (5).
This expression can be integrated for a given number of
iterations T'. The result is o times a two-variable poly-
nomial in oy and $;. This means that O(aq, 1,T) is a
T-sequence of polynomials functions of oy and f;. The
powers of these polynomials grow up with 7". For exam-
ple, for T =3 and T' = 4 we have

O(ay, f1,3) = 15+ 9002 + 12003 + 27007 + 18083;a3
+ 906202 + 108005 + 3600461 + 1800a$ + 3600357
+ 108005 81 + 1200362 (20)

and

O(a1, f1,4) = 154 9002 + 12003 + 27007 + 180303
+ 906202 + 10803 + 3600 6; + 2610a$ + 12600] 57
+ 216003 81 + 4800333 + ... 4+ 2700005,  (21)

One can verify that, up to order (m + n) = 5, the
coefficients of af*G} in O(ay, f1,3) remain unaltered for
all further iterations (T' > 4), so one can write down an
asymptotic series expansion

O(a1,f1,3) = 15+ 90a? + 12002 + 270a] + 18063
+903%02 4 108002 + 3600} 3;. (22)

In general, the O(ay, 41, T) series expansion in a*G} is
exact up to order (m +n) =27 — 1.

In fact, this expansion is ezactly the same as the one
arising from a Taylor expansion of formula (19).

Naturally, the later procedure is easier than ours,
which starts from the definition and requires several in-
tegrations. However, it is the only possible way when no
exact sixth moment formulas are available (see, for exam-
ple, the next section).

Using Maple [30], we were able to go up to T' = 30.
Thus there is a sequence of O(ay,p1,7T), T = 1,...,30,
which can be explored by extrapolation techniques. For
the NYSE (FTSE) series, we have kpnyse = 38.507 (11.061)
and Opyee = 17717.37 (888 35). Solving simultaneously
the kurtosis equation kg (a1, 1) and Og(ay, f1,T) for di-
verse T', we obtain a sequence of curves 31(a1,T) plotted
in Figure 1. Where these curves cross the kurtosis curve,
gives a sequence of solutions a1 (T') which are shown in the
insets. The data are very well fitted by the exponential

Oél(T)

where, for the NYSE (FTSE) B = 0.82£0.04, (0.48+0.02)
I' = 9.69 +0.52 (11.13 + 0.64) and C' = 0.246 + 0.006
(0.184 £ 0.004). So, in the limit T'— oo, the extrapolated
value of oy are 0.246 (0.184). Using these values in the
equations (11) and (12), we obtain ap and (1. The new
sets sgp for the control parameters are

_B exp(f%) e (23)

60 = (g, a1, B1) = (5.49 x 107°%,0.246, 0.686) (24)
sT¢ = (g, o, B1) = (0.49 x 107°,0.184,0.768) (25)
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Fig. 1. (a) NYSE — Full line is the solution of the kurtosis
equation kg(a1,B1) = 38.507. Dotted lines are the solutions
of the standardized 6th moment sequence Og(ai,B:1,T) =
17,717.37 for T = 12,15, 18,21, 24, 27, 30. The crossing points
generate a sequence o (1) plotted in the inset. (b) FTSE — the
same as (a) but with kg (a1, 31) = 11.061 and Og (a1, 81,T) =
888.35

We can now simulate Gaussian GARCH processes us-
ing the three sets of parameters. In Figure 2, we plot
the PDF of the NYSE (FTSE) index together with the
10088 (5768) points generated by GARCH’s dynamics,
averaged in an ensemble of 10000 runs, for the sets se,
5, and Seth.

In order to check out the adjusting quality of the simu-
lated PDF, we evaluate the Pearson’s chi-square test [31].
Let us denote by H (i) the histogram value at point ¢, then

— H,(i))?
+ H, (i)’

M
Z 'Lndez

=1 zndea

(26)

where M is the total number of graph points and s is one
of the parameter sets. We found for the NYSE (FTSE)
the following values: xs,,, = 206.4 (70.4), xs, = 71.7
(67.9) and xs,, = 93.3 (65.6). As we can see, the mle
method gives the worst results for both indexes. On the
other hand, our technique works slightly better for the
FTSE index, whereas the 7. procedure do the same for
the NYSE index.

What can we say about the autocorrelation function
F(7)? Which set of parameters gives the best results? It is
clear from the Figure 3a that the set sg;, is much superior
than the others. The results for the sets 7, are the worst
for both indexes. In the case of the FTSE index, they are
almost equivalent.
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Fig. 2. (a) The probability density function for 10,088 points

of the NYSE composite index. (b) The probability density
function for 5768 points of the FTSE 100 index.

Probability Density Function

Taking into account the results for the histograms and
the autocorrelation functions, we conclude that our pro-
posal gives the best fitting.

As it is well-known, the Gaussian GARCH dynamics is
unable to describe the time scaling properties of a financial
index. For this reason, in the next section, we apply our
Gth-moment technique to the GARCH (1, 1) model with
Laplacian conditional probability [16].

4 Laplacian GARCH models

An alternative to the Gaussian conditional probability is
the Laplacian, defined as

exp(— ﬁgltxt‘ )

Ut\/é 7

where the variance o? changes with time according to
equation (3). As we shall see, the Laplacian gives a more
leptokurtic PDF.

Using the Laplacian distribution, we investigate the
moments which can be derived from equation (5). The
second moment is given once more by the equation (11),
but the kurtosis relation is quite different. We deduced the
following analytic expression for the kurtosis of a Lapla-
cian GARCH process

()
ot 0+

Py(w) = (27)

3002
]. — 60&% — 204161 — 6%

Due to the fact that an exact formula for the standard-
ized 6th moment @ (aq, 1) is not known, we follow our

kr(on, f1) = (28)
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Fig. 3. The autocorrelation function F(7) versus time 7. (a)
NYSE index, (b) FTSE index. Simulations were carried out
over an ensemble of 10 000 runs.

procedure described in the previous section. We substitute
equations (3) and (27) into (5), integrating the result up
to some given order T'. Once again, this series turns to be
exzact up to order (27 — 1).

Utilizing the software Maple, we were able to go up to
T = 18. The sequence of solutions ay (T') are very precisely
fitted by the exponential of the equation (23). For the
NYSE (FTSE) we got B =0.40£0.01, (0.20£0.01) I" =
6.77 £ 0.26 (8.02 £0.35) and C' = 0.138 &+ 0.003 (0.097 +
0.002). The extrapolated values of a; are thus 0.138 and
0.097 (see Fig. 4). Using equations (11) and (28), we arrive
to the new sets ssgi, for the control parameters

ssIV%¢ — (ag, a1, B1) = (4.73 x 107°,0.138,0.803) (29)

ssd = (o, a1, B1) = (5.49 x 107%,0.097, 0.850). (30)

In the next section, based on our 6th moment series ex-
pansion method, we will try to find out which dynamics,
Gaussian or Laplacian, gives better results for the time
scaling properties of both indexes.

5 Time scaling properties

First, let us compare the capabilities of a Gaussian and an
Laplacian GARCH process to describe the PDF’s and the
time autocorrelation function using the set of parameters
coming from the standardized 6th moment series tech-
nique.

In Figure 5, we present the NYSE and FTSE PDF’s for
both GARCH dynamics. The calculated x? deviations for
the histograms of the NYSE (FTSE) index are x* = 93.3
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Fig. 4. (a) NYSE — Full line is the solution of the kurtosis
equation kr(a1,B1) = 38.507. Dotted lines are the solutions
of the standardized 6th moment sequence Op(a1,f1,T) =
17,717.37 for T = 8,10, 12, 14, 16, 18. The crossing points gen-
erate a sequence oy (7T) plotted in the inset. (b) FTSE — the
same as (a) but with xr(a1,81) = 11.061 and O (a1, B1,T) =
888.35.

(65.6) and x? = 189.2 (205.9) for the Gaussian and Lapla-
cian dynamics, respectively. So, the Gaussian GARCH is
closer to the NYSE and FTSE PDF’s.

Figure 6 plots the time autocorrelation function F(r).
In the NYSE case (Fig. 6a), a mere visual inspection
is sufficient to conclude that the Laplacian formalism
is superior for all times. However, for the FTSE index
(Fig. 6b),the Gaussian GARCH is slightly better than
the Laplacian (mainly in the interval 30 < 7 < 70). Be-
low, we investigate the time scaling properties of the two
dynamics.

By using equation (13), we can determine, for each one
of them, the probability of return to the origin P(0). This
quantity scales as a power law

P(0) ~ (At)~°. (31)

By changing the time horizon At, one can answer whether
the overall dynamics is well described by a GARCH (1, 1)
process.

In Figure 7a we plot P(0) versus At for the NYSE
series. We find the following exponents: @ = 0.69 £ 0.07
(NYSE), a = 0.499+0.001 (Gaussian) and o = 0.63+£0.03
(Laplacian). This latter value is very near to the NYSE
exponent and within the error bars.

In Figure 7b, we show the results for the FTSE in-
dex. We get the exponents: o = 0.49 + 0.10 (FTSE),
a =0.499 +0.001 (Gaussian) and « = 0.65 £ 0.03 (Lapla-
cian). In contrast to the NYSE case, the FTSE index is
better described by the Gaussian dynamics.
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Fig. 5. The PDF’s versus the returns Z. The Gaussian as well
as the Laplacian GARCH PDF’s were obtained by using the
set of parameters sg:p and SSeth.
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Fig. 6. The time autocorrelation function F(7) versus time 7
for the NYSE and FTSE indexes.

6 Conclusions

We conclude that, in spite of their wide use in the lit-
erature, the maximum likelihood estimator and the time
autocorrelation methods do not generate the best set of
GARCH parameters. In our paper, we propose to estimate
the GARCH parameters through a perturbative expansion
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Fig. 7. The probability of return to the origin versus the time
horizon At for the NYSE and the FTSE indexes.

of the sixth moment. We extrapolate the sequence of cross-
ing points of the kurtosis curve with the sixth moment
asymptotic expansion up to some given and small order
T. We think this a good way to treat the non-stationarity
problem. As the extrapolated value of the «y parameter
has an error smaller than 1% (for all cases described in
our paper), we believe that our perturbation method is
well justified.

Our proposal of using the standardized 6th moment
asymptotic series expansion produces a set of parame-
ters sgn, which gives a nice fit for the probability density
function and a much better adjust for the autocorrelation
function. Moreover, this result is robust since it is valid for
both indexes studied: the NYSE composite and the FTSE
100. Last but not least, we observe that our method is
applicable to any conditional probability function.

Despite all these accomplishments, our method is more
involved than the others. There is a laborious series ex-
pansion and extrapolation which certainly demand more
CPU time. In order to set error bars to our 6th mo-
ment estimator, we tested our method on a simulated
Gaussian GARCH time series. Averaging over 10° real-
izations, we got for the NYSE index, sg:p, = (o, 1, 01) =
(5.49 x 1076 £ 4.61 x 10457 0.24 £ 0.02,0.68 4 0.03).

Based on our 6th moment series expansion method, we
studied the performance of the GARCH (1, 1) model un-
der two different conditional probabilities: Gaussian and
Laplacian distributions. For the Laplacian case, we de-
rived an exact expression of the kurtosis as a function of
the control parameters.

A comparison between the Gaussian and Laplacian
forms shows that the Gaussian GARCH gives a better
PDF for both indexes. However, with respect to the au-
tocorrelation function, the Laplacian formalism fits better
the NYSE index while the FTSE is finer adjusted by the
Gaussian dynamics.

Finally, when the probability of return to the origin
of the NYSE index is analyzed, the Laplacian GARCH
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performs much better than its Gaussian counterpart. On
the other hand, the Gaussian formalism gives the finest
time scaling exponent to the FTSE index.
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